Projections from the ventral respiratory group to phrenic and intercostal motoneurons in cat: an autoradiographic study.

نویسندگان

  • J L Feldman
  • A D Loewy
  • D F Speck
چکیده

Anterograde transport of tritiated amino acids (leucine, lysine, and proline) was used to examine the spinal projections of respiratory premotor neurons in the ventral respiratory group (VRG) of cats. This population of neurons corresponds anatomically with the nucleus ambiguus-retroambigualis. Small volumes (20 to 50 nl) of tritiated amino acids were pressure ejected into the middle of the VRG through a micropipette which permitted simultaneous recording of respiratory modulated activity. In two cats injections were made caudal to the obex in regions which contained expiratory modulated neurons. In five cats injections were made rostral to the obex in regions containing inspiratory neurons. After a 2-week survival period, cats were anesthetized and perfused. The entire neuraxis was removed and processed using standard autoradiographic techniques. Transport of tritiated amino acids revealed a marked bilateral projection to lamina IX of the spinal cord at the C4 to C6 level and a primarily contralateral projection to laminae VIII and IX in the thoracic spinal cord. Distinct descending pathways to the phrenic motor neurons were observed in the lateral funiculus and in the ventral funiculus; descending fibers to the intercostal motoneurons in the thoracic cord appeared to be restricted to the ventral funiculus. Labeling of axon terminals in both the cervical and thoracic cords was confined to ventral horn regions which contain motoneurons. These results suggest that monosynaptic projections from brainstem bulbo-spinal neurons to spinal motoneurons are important in controlling respiratory movements of the diaphragm and intercostal muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurochemistry and anatomy of the ventral medulla

The relationship between the anatomy and neurochemistry of neurons in the ventral medulla oblongata in regions that is responsible for cardiovascular, airways, and respiratory regulation was investigated. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM) were made throughout the ventral medulla in anesthetized rats. Arterial blood pressure, sympathetic nerve activity and phreni...

متن کامل

Neurochemistry and anatomy of the ventral medulla

The relationship between the anatomy and neurochemistry of neurons in the ventral medulla oblongata in regions that is responsible for cardiovascular, airways, and respiratory regulation was investigated. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM) were made throughout the ventral medulla in anesthetized rats. Arterial blood pressure, sympathetic nerve activity and phreni...

متن کامل

Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord.

Although neurotrophic factors have been implicated in several forms of neuroplasticity, little is known concerning their potential role in spinal plasticity. Cervical dorsal rhizotomy (CDR) enhances serotonin terminal density near (spinal) phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output (Kinkead et al., 1998). We tested the hypothesis that selected neu...

متن کامل

The role of proprioceptive afferents in the control of respiratory muscles.

Building largely on the results of previous studies of motor control in respiration the role of proprioceptive control of respiratory movements is discussed with particular reference to the significance of the following points: (i) The co-activation of fusimotor and alpha motoneurons in load compensation and in the control of velocity and force of the respiratory movements. (ii) The convergence...

متن کامل

Ventrolateral medullary respiratory network and a model of cough motor pattern generation.

The primary hypothesis of this study was that the cough motor pattern is produced, at least in part, by the medullary respiratory neuronal network in response to inputs from "cough" and pulmonary stretch receptor relay neurons in the nucleus tractus solitarii. Computer simulations of a distributed network model with proposed connections from the nucleus tractus solitarii to ventrolateral medull...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 1985